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ABSTRACT

Data-driven learning approaches have gained a lot of inter-
est in evaluating and validating complex dynamic systems.
One of the main challenges for developing a reliable learn-
ing model is the lack of training data covering a large range
of various operational conditions. Extensive training data can
be generated using a physics-based simulation model. On the
other hand, the learning algorithm should be still tested with
experimental data obtained from the actual system. Modeling
errors may lead to a statistical divergence between the simu-
lation training data and the experimental testing data, causing
poor performance, especially for domain-agnostic black-box
learning methods. To close the gap between the simulation
and experimental domains, this paper proposes a physics-
guided learning approach that combines the power of neural
network with domain-specific physics knowledge. Specifi-
cally, the proposed architecture integrates physical parame-
ters extracted from physics-based simulation data into the in-
termediate layers of the neural network to constrain the learn-
ing process. To demonstrate the effectiveness of the proposed
approach, the architecture is adopted to a damage classifica-
tion problem for a three-story structure. Our results show
that the accuracy for localizing the damage correctly based
on experimental data improves significantly over black-box
models. We also use the physics-based intermediate layers to
analyze the interpretability of the results.

1. INTRODUCTION

In the last decade, the use of machine learning (ML) algo-
rithms gained a lot of interest within the community of condi-
tion monitoring for dynamic systems (Widodo & Yang, 2007;
Farrar & Worden, 2012; Stetco et al., 2019). A majority of
ML applications in this area exercise a data-driven black-box
approach that utilizes a large volume of experimental data ob-
tained directly from the actual dynamic system. Black-box
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methods are proven to be successful in diagnosing the sys-
tem through characterization and localization of the damage
(Bakhary et al., 2007). One of the obstacles for such methods
is often the availability of sufficient training data (Z. Zhang
& Sun, 2020). More specifically, access to a complete train-
ing dataset covering a wide range of conditions is costly and
in some instances impossible without actually damaging the
system prior to operation. This problem is a major roadblock
in developing efficient data-driven algorithms for diagnostics
of dynamic systems (Sadoughi & Hu, 2019).

For cases where training data captured from the field is lim-
ited, a data-driven black-box ML model could be trained with
simulation data. In other words, to compensate for the lack of
experimental training data, a representative analytical model
can simulate the behavior of the system physics to some de-
gree. While physics-based analytical models are capable of
generating extensive training dataset, the resulting ML al-
gorithm should still be evaluated with experimental testing
data. Well-established analytical models are capable of sim-
ulating the dynamic response of the target system (Teughels
& De Roeck, 2005; Jaishi & Ren, 2006). On the other hand,
calibrating a large set of parameters for complex systems to
achieve accurate physical behavior is often computationally
exhaustive and at times infeasible (R. Zhang et al., 2020).
Eventually, the analytical representation inherits modeling er-
ror. In this case, it is expected that the ML algorithm will
fail to perform efficiently during testing since the simulation
training data and experimental testing data are statistically
divergent (Gardner et al., 2020). To address this drawback
of data-driven black-box algorithms, the inference should in-
corporate domain-specific physical knowledge. The physics-
guided learning (PGL) which is essentially a hybrid approach
aggregating data-driven inference with physical parameters
has the potential to leverage the performance of the condition
monitoring further and to bridge the gap between simulation
and experimental domains.

In recent years, a number of PGL approaches have been pro-
posed (Karpatne et al., 2017; Jia et al., 2018; Sadoughi & Hu,
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2019; R. Zhang et al., 2020; Z. Zhang & Sun, 2020; Yao et al.,
2020). However, the variety of applications implies that the
implementation of a proper PGL with domain-specific knowl-
edge is non-trivial. Moreover, most of the existing work fo-
cuses on the prediction of system responses using PGL. In the
area of diagnostics, little research effort has been devoted to
incorporating of physical knowledge into the data-driven ML
and exploiting deep learning architectures for damage classi-
fication.

In this paper, we propose a damage detection and local-
ization architecture for dynamic systems, namely, physics-
guided learning for structural health monitoring (PGL4SHM)
that combines the power of neural networks with domain
specific physics knowledge. In particular, PGL4SHM is a
multi-task deep learning architecture which (i) utilizes the
synthetic data simulated by a numerical physics-based rep-
resentation of the target structure for training and (ii) in-
corporates domain-specific physical parameters derived from
this representation into the loss function. The multi-tasking
PGL4SHM is trained with simulated structural responses in
time-series form which serve as the input to the deep network.
Additionally, during the learning phase, the physical param-
eters such as natural frequencies and mode shapes that are
known to be structural damage indicators (Kim et al., 2003)
are used for training the intermediate layers of PGL4SHM
(Muralidhar et al., 2019). The modal features (natural fre-
quencies and mode shapes) can be extracted directly from the
numerical model. Since the organic relationship between the
physics-based model representation, structural responses, and
damage state is embedded into the PGL4SHM, the architec-
ture is capable of generalizing damage detection compared to
black-box approaches. As PGL4SHM uses modal features
derived from numerical model, this embedding is physics-
based rather empirical.

To validate the PGL4SHM architecture, two case studies are
considered. The first study is purely analytical and inves-
tigates the performance and efficiency of the proposed ap-
proach under ideal conditions since every aspect of the sys-
tem is simulated. The second case study considers the ex-
perimental setup of a small-scale three-story structure tested
at Los Alamos National Lab. The results from both the an-
alytical and experiential case studies show that the proposed
architecture has better generalization capability in localizing
the damage compared to black-box models in the presence
of modeling errors. The performance gain is more evident
when the numerical representation deviates from the actual
structure further. Lastly, we evaluated the explainability of
the results by analyzing the relationship between structural
responses, damage state, and the integrated physical parame-
ters.

Overall, PGL4SHM combines data-driven machine learning
with knowledge of physics. As a result of this, PGL4SHM

has the potential to improve damage detection and localiza-
tion for SHM applications and promises more accurate deci-
sions and prioritization for maintenance operations.

In summary, the major contributions of this paper are:

• A physics-guided learning architecture, PGL4SHM is
proposed to generalize damage detection and location
prediction for dynamic systems.

• The proposed architecture uses physics-constrained in-
termediate variable layers that rely on physical param-
eters known to be statistically important features for
damage detection such as natural frequencies and mode
shapes.

• For proof of concept, the proposed method is eval-
uated by comparing damage localization performance
to black-box models for numerical and experimental
cases.Results show that the new approach improves pre-
diction accuracy in the presence of modeling error.

• PGL4SHM improves the explainability of the results
since the intermediate layers expose valuable informa-
tion that is highly relevant to the physics of the target
structure.

2. PROBLEM FORMULATION

Structural systems can experience damage throughout their
life-cycle. It is essential to detect and locate the damage earl-
on before it progresses to a bigger failure. In this context,
damage localization is a supervised classification problem.

In this study, we consider black-box deep neural networks
that label raw input data in the form of acceleration time-
series measurements according to the damage condition the
structure is experiencing. The implicit assumption for the
black-box model is that the training data is available for ev-
ery expected damage condition. In reality, the training data
is only available for no damage condition. To obtain training
data for other damage conditions, the structure should be de-
liberately tarnished which is not practical. We can create a
physics-based model of the structure and generate simulated
data for various damage scenarios of interest. Accordingly,
the black-box model can be trained with the simulated data
and tested with experimental data after deployment. How-
ever, this approach is often not feasible since the physics-
based simulation often has intrinsic modeling error. Due to
the deviation between simulated training and experimental
testing data, the black-box model will become ineffective in
labeling the input correctly.

The problem considered in this paper is localizing the damage
accurately in the presence of modeling errors. To address this
problem, three challenges should be resolved. First, we need
to create a physics-based representation of the target system
based on the available data. This model should be used to
generate simulated data. Secondly, we should design a deep
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learning architecture that is trained with simulated data but
can generalize well for experimental data compared to the
black-box model. Thirdly, we need to establish the physi-
cal parameters most relevant to the damage condition of the
structure to integrated into intermediate layers of the architec-
ture during inference. Ultimately, successful implementation
of PGL4SHM should generalize the prediction well for the
cases where field data is limited and physics-based simula-
tion has some modeling error.

3. PHYSICS-GUIDED LEARNING

For a given set of structural response measurements in the
time domain, we are interested in predicting the damage con-
dition of the structure. Such a predictor can be trained with
a supervised learning approach since for each input, x there
is a label, y corresponding to the damage state. One way to
learn the mapping from x to y is by training a black-box feed-
forward neural network. By utilizing nonlinear activation
functions within neurons, this network allows us to expose
the complex relationship between the structural responses and
the damage conditions. While the black-box networks are
capable of learning the latent feature space, they can fail to
generalize the predictions for unseen observations.

For many dynamic systems, the data labeled as normal is of-
ten available when they are deployed. However, access to
data relevant to damage conditions is limited without harm-
ing the system. The absence of experimental data can be com-
pensated by simulating damage on a finite element model of
the system and obtaining new input/output pairs. However,
due to the poor generalization of black-box models, the pre-
dictor will suffer from the presence of modeling errors and
label the given inputs incorrectly. To address the limitation
of the black-box models, this paper presents the physics-
guided learning for structural health monitoring (PGL4SHM)
which integrates the physical knowledge regarding the dy-
namic characteristics of the target structure into the deep
learning architecture.

3.1. Overview of PGL4SHM Architecture

Damage occurring in a load-carrying member changes the dy-
namic characteristics of the structure (Balageas et al., 2010).
Fundamental dynamic characteristics of a system can be de-
scribed in terms of its modal parameters such as natural fre-
quencies, f , and mode shapes, ϕ. These parameters can be
obtained from time series data using frequency domain anal-
ysis techniques (Brincker et al., 2000). Prior research has
shown that supervised black-box algorithms utilizing modal
parameters in the input layer can predict damage detection
and localization with success (Z. Wang et al., 1997; Hakim
& Razak, 2014). A number of literature specifically focused
on the use modal parameters such as natural frequencies and
mode shapes to predict damages in a more refined manner

(Kim et al., 2003; S.-Q. Wang & Li, 2012). On the other
hand, majority of the aforementioned approaches depends on
the existence of full-range experimental data. In this paper,
to overcome the limitations of black-box models, we propose
PGL4SHM where the domain-specific knowledge is embed-
ded into the deep learning architecture through intermediate
layers inspired from Muralidhar et al. (2019).

Here, we assume that the input is structural response mea-
surements in the time domain obtained from a physics-based
simulated model, the output is the damage condition associ-
ated with the input data. The intermediate layers utilize phys-
ical variables to improve supervised learning to enable a rich
and generalized representation of the target system and to im-
prove supervised learning. The physics-based model is devel-
oped as a representative finite element model (FEM) based on
the available experimental data obtained from the undamaged
structure. The simulated training data is generated using this
FEM for various damage conditions of interest, including no
damage case. The modal parameters f and ϕ can be extracted
directly from the FEM. A simplified layout of the architec-
ture for training is given in Figure 1. In this architecture,

Figure 1. Simplified layout for training PGL4SHM

the input later takes the simulated time-series data obtained
from FEM. Each piece of simulated data is associated with a
label designating the damage condition. The feature extrac-
tion layers are a set of layers designed as convolutional neural
networks (CNN). Additionally, there are two individual inter-
mediate variable layers in parallel. The output of each inter-
mediate layer corresponds to a modal parameter (f and ϕ).
While the modal parameters are simply extracted from the
FEM using eigenvalue problem (Craig Jr & Kurdila, 2006),
it can be also derived from time series using domain-specific
frequency-domain analysis processes (Ghanem & Shinozuka,
1995). The intermediate layers are physics-guided and are di-
rectly associated with physically meaningful modal parame-
ters which are known to be good damage indicators. In this
regard, this architecture exploits the feature extraction as a
modal analysis step to compute intermediate variables which
essentially blends domain-specific knowledge with the learn-
ing process. For this study, we assumed the intermediate vari-
able layers are densely connected following a flattening layer
after CNN based feature extraction layers. Next, the label
prediction layers are tasked to extract features from modal
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properties to determine the damage condition for the given in-
put. For training, PGL4SHM requires simulated time-series
data, associated modal parameters, and labels. During test-
ing, the architecture needs only experimental data to the input
layer and predicts the relevant damage condition accordingly.

A black-box architecture is very similar to the PGL in nature
with a main difference. Since black-box does not utilize in-
termediate layers and physical parameters associated with it,
these layers are simply not implemented.

3.1.1. Physics-based Modeling

A physics-based presentation of the structure can be often
achieved by modeling the target structure using a finite ele-
ment model. In FEMs, the structural systems are modeled
as a set of discrete elements (known as finite elements) that
are related to the physical properties of the structure such as
stiffness, area of the member section, etc. A finite element
model can be idealized as a set of mass (M ), stiffness (K),
and damping matrix (C) which can be written in terms of
equations-of-motions (EOMs).

Mẍ+ Cẋ+Kx = F (1)

where F is the input excitation such as ground motion, x,
ẋ, and x are the acceleration, velocity, and displacement ob-
tained from the system, respectively. A finite element model
can be generated either manually by representing each struc-
tural element faithful to its physical properties or by extract-
ing the EOM matrices from the experimental data (Fritzen,
1986; Chen et al., 1996). Complex FEMs involve large di-
mensional matrices which complicate the modeling and make
the calibration process cumbersome. As a result, the model-
ing errors are inevitable but often acceptable for many engi-
neering applications.

Once the matrices are obtained, the training data can be sim-
ulated using Eq 1. By modifying M or K depending on the
damage type, various damage conditions can be simulated.
For every damage type, an eigenvalue problem can be applied
to extract modal parameters as follows:

λMϕ = Kϕ (2)

where λ is the diagonal eigenvalue matrix and can be written
also as λ = diag(2πf2). It should be noted that for every
combination of K and M pair, a unique pair of f and ϕ can
be generated.

In addition to eigenvalue analysis, the modal parameters can
be obtained from structural responses using sophisticated
time and frequency analysis techniques (Ghanem & Shi-
nozuka, 1995). A clear relationship between physics-based
EOM matrices, structural responses, and modal features is
obvious as all of them are related to the dynamic characteris-
tics of the structure. Integration of modal parameters into the

learning process as domain-specific knowledge is a promising
tool for generalizing damage detection compared to black-
box approaches.

3.1.2. Learning Process

This network is typically trained with structural response data
obtained from a representative FEM. Additionally, the ar-
chitecture utilizes physics-based modal parameters also ob-
tained from FEM. Accordingly, the empirical loss function
that needs to be minimized during learning can be formalized
as follows:

Loss = LossDMG + λPGLLossPGL (3)

Eq. 3 implies that the network utilizes a multi-task learn-
ing scheme, where LossDMG corresponds to the categorical
cross-entropy loss between the actual damage condition, y
and predicted label, ŷ; LossPGL represents mean square er-
ror (MSE) for the physics-guided learning parameters; and
λPGL is the trade-off parameter. Please note that a black-box
model will only use LossDMG for the training and disregard
the physics related loss, LossPGL.

The physics-guided loss, LossPGL given in Eq. 3 can be de-
scribed as:

LossPGL = LossPGL(f, f̂) + LossPGL(ϕ, ϕ̂) (4)

Here, LossPGL(f, f̂) is the MSE between the actual nat-
ural frequencies, f and predicted frequencies, f̂ ; and
LossPGL(ϕ, ϕ̂) is the MSE between the actual mode shapes,
ϕ and predicted ones, ϕ̂. Since LossPGL is a regression loss,
we assume the neurons of the intermediate layers are linearly
activated.

4. EVALUATION

For this study, we evaluated the PGL4SHM architecture by
comparing it to the black-box model performance. We have
considered two case studies. The first case study focuses on
a finite element model of a simply supported beam, and the
second case investigates experimental testing of a three-story
structure.

4.1. Implementation

The FEM (simply supported beam) and experimental struc-
ture (three-story structure) are excited with white noise un-
der various damage conditions and the resulting dynamic re-
sponses are collected from all available sensors in terms of ac-
celerations for some amount of time. Then, the accelerations
are divided into 1-second chunks and each of these chunks
are categorized according to the relevant damage state. The
data obtained from this process is the reference data and used
for testing.
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Figure 2. Black-box architecture adopted from Lin, Nie, &
Ma, 2017

In parallel, for each case, another FEM model is developed
to replicate the original structure. This model is intentionally
misrepresented to some degree in order to introduce model-
ing errors that occasionally occur during the design process.
Using this FEM, the structural responses and corresponding
damage labels are generated. In addition, the modal param-
eters are extracted from this FEM and vectorized. This data
is then divided into training, validation, and testing with a
ratio of 0.6 : 0.2 : 0.2, respectively. The training and vali-
dation data is used during the training phase of PGL4SHM.
The testing data and the reference data are used for perfor-
mance evaluation. Before training, all available data is stan-
dardized by removing the mean and scaling to unit variance
with respect to training data. All FEM and experimental data
is standardized with scikit-learn toolbox.

Next, two neural network models are trained for each case.
The first neural network is a black-box model that learns end-
to-end relationship between the time series input and the dam-
age condition (see Figure 2). The network is structured as
prescribed in Lin et al. (2017). This model does not utilize
physics-guded variables, mode shapes and frequencies at all.
The dimension of the input depends on the number of the
sensors and the sampling number. The feature extractor and
label prediction layers are CNN and DNN, respectively. All
neurons have leaky RELU activation functions. The size of
the output layer changes with respect to the number of dam-
age conditions considered for the case study. The neurons of
this layer are activated with softmax. To generalize the pre-
dictions and mitigate the internal covariate shift, batch nor-
malization layers are also inserted to the black-box model.
Lastly, to reduce the number of trainable parameters, every
batch normalization layer is followed by a max pool layer.
The second model, PGL4SHM architecture is trained with
the training data to minimize the loss function given in Eq. 3
(see Figure 3). This network structure follows an arrangement
similar to the black-box model with the addition of interme-
diate value layers which employs the physics-guided modal

Figure 3. PGL4SHM architecture

parameters. The intermediate layers are densely connected
and the neurons are linearly activated. Both black-box model
and PGL4SHM architectures are trained using Keras running
on TensorFlow 2.0 in Python 3.7. The performance of both
architectures is evaluated by computing the classification ac-
curacy.

4.2. Case 1: Analytical Example

This case focuses on the effectiveness of the proposed model
where modeling errors relevant to environmental, opera-
tional, and material uncertainties are controlled more pre-
cisely. Here, we consider a simply supported beam studied by
Lin et al. (2017). The beam has a span length of L = 10.0 m
and a rectangular section with 0.1m width and 0.25m (see
Figure 4). The beam is assumed to be made of steel with the
elastic modulus of 206 GPa and density of 7, 900 kg/m3.
The damping is simulated with classic Rayleigh damping
where mass matrix (M ) proportional factor, α is 1.0 s−1 and
stiffness matrix (K) proportional factor, β is 1.15 × 10−6 s.
The beam is modeled using FEM tool, Open System for
Earthquake Engineering Simulation - OpenSees (McKenna
et al., 2010). The beam is discretized into ten equally long
members that have linear elastic-beam column element prop-
erties. Excluding support nodes, the beam has 9 nodes. To
generate acceleration responses, the beam is excited at each
of the nine nodes vertically with a random noise. This ex-
citation has a Gaussian distribution with a mean of 200 N
and standard deviation. To simulate finite features of the en-
vironmental noise, the random excitation is filtered with an
eighth-order Butterworth filter that has a cutoff of 512 Hz.
The sampling rate for the simulation is selected 8192 Hz. To
reduce the volume of the data, the simulation data is down-
sampled to 1024 Hz and only vertical accelerations at nine
nodes are considered. For each loading case, the size of one
simulation instance is (9 nodes × 1024 Hz). To simulate
damage conditions, each of the ten members is damaged in-
dividually by reducing the member stiffness by 10% to 50%
with 10% increments. Including no damage state, 11 damage
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conditions are simulated at nine loading positions across ten
members. In addition to time-series data, for each data sim-
ulation, first 5 natural frequencies and 27 three modes shape
points (3 modes × 9 nodes) are extracted from the FEM an-
alytically using OpenSees. The resulting data is categorized
according to the damage location independent of the magni-
tude of the damage and the location of the excitation. All the
data generated so far constitutes the reference data for testing.
In parallel, another set of simulation data are generated with

Figure 4. Simply supported beam model used for analytical
case

an inaccurate FEM model. To account for environmental, op-
erational, and material uncertainties, for each data instance,
the stiffness of the inaccurate model is perturbed with a log-
normal distribution. Four inaccurate models are developed
where the maximum error of all sampled elastic modulus
varies between 5% and 20% with 5% increments. This data
is used for training, validation, and testing of PGL4SHM. In
addition to time-series data, for each data simulation, the first
5 natural frequencies and 3 modes shapes are extracted from
the FEM analytically using OpenSees.

Following the deep-learning architecture provided by Lin et
al. (2017), the black-box model and PGL4SHM counterpart
are developed, yielding about 1,072,267 and 621,739 train-
able parameters to optimize, respectively. The PGL4SHM
has intermediate layers between feature extraction and label
prediction layers. These intermediate layers act as a choke
point, decreasing the number of trainable parameters. To
make up for the capacity of the PGL4SHM, two more con-
volutional layers (a regular convolutional layer and one with
batch normalization and max pooling) are added before the
flattening. This model, namely PGL4SHM - Extended, has
1,097,387 trainable parameters.

Two versions of PGL4SHM (regular and extended) are com-
pared to the black-box architecture. Table 1 summarizes the
classification accuracy and the improvement over black-box
architecture with respect to the maximum modeling error in
percentage. In addition, Figure 5 visualized the accuracy of
all architectures. For no modeling error (ME 0%), while
black-box outperforms the regular PGL4SHM, the perfor-
mance of extended PGL4SHM surpasses all of them. When
there is a small modeling error (ME 5%), black-box is the best
among the three, resulting in to 94 percent accuracy. On the
other hand, the difference between black-box and extended
PGL4SHM (84.98 vs 84.55 percent) is negligible. The power
of PGL4SHM shines when the modeling error is above 5 per-

cent. For the cases ME 10%, ME 15%, and ME 20%, the per-
formance of both PGL4SHM architectures succeeds black-
box significantly. Overall, the improvement of prediction ac-
curacy increases progressively with the modeling error.

In general, the black-box model is a good choice when the
modeling fidelity is ensured. Both black-box and extended
PGL4SHM have about the same amount of trainable parame-
ters, and their prediction accuracies are similar. The extended
PGL4SHM is successful for almost every case except the case
ME 5%, however, compared to black-box, the performance
loss is negligible. When the modeling error is small, com-
pared to the extended PGL4SHM, the regular PGL4SHM is,
in general, less effective due to the small number of trainable
parameters. The results clearly show that especially when the
numerical model does not represent the actual system prop-
erly, blending physical parameters with data-driven machine
learning has a positive impact in improving the damage local-
ization.

Figure 5. Visualization of classification accuracy for analyti-
cal case

4.3. Case 2: Experimental Example

The performance of the PGL4SHM approach is also eval-
uated on a small-scale three-story structure tested by
Figueiredo et al. (2009). An electromagnetic shaker is
attached to the base of the structure (see Figure 6). The
structure was excited with a band-limited white noise and the
resulting horizontal acceleration responses and the excitation
force were measured at a sampling rate of 320 Hz for about
25 s. For this study, including undamaged state, four damage
conditions are considered. The damage states are established
by reducing the stiffness of one or two columns at each floor
by 87.5 percent. Each response data instance is categorized
according to its respective damage condition. After the input
force is removed from the measurements, time series data
are divided into 1-second chunks. Each chunk is catego-
rized according to its respective damage condition. The data
collected in this phase is the reference data for testing. In
addition, a high-fidelity lumped-mass model is generated
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Black-box PGL4SHM PGL4SHM - Extended
Modeling Error Accuracy (%) Accuracy (%) Improvement (%) Accuracy (%) Improvement (%)
ME 0% 93.75 91.90 -1.97 93.89 0.15
ME 5% 84.98 83.88 -1.29 84.55 -0.50
ME 10% 67.71 70.78 4.55 70.52 4.15
ME 15% 52.98 56.67 6.96 56.29 6.24
ME 20% 42.75 47.18 10.35 48.60 13.68

Table 1. Classification accuracy of black-box and PGL4SHM for analytical case

Figure 6. Three-story structure used for experimental case

in the form of mass-stiffness-damping matrices using the
parameters provided by Hernandez-Garcia et al. (2010) and
Sun & Betti (2015). A 10 percent error is introduced into
the stiffness matrix to simulate the modeling uncertainties.
Using this imperfect model, data for all damage conditions
are produced. In addition, three natural frequencies and 9
mode shapes points (3 modes × 3 stories) are obtained using
this model. The data from the imperfect FEM model is used
for training and validation of PGL4SHM. Black-box and
PGL4SHM architectures have 707,844 and 557,459 train-
able parameters, respectively. No further layers are added
to PGL4SHM to extend the capacity of PGL4SHM. We
also ensured there is no overfitting by validating the models
against their respective numerical datasets. The performance
of trained architectures and the improvement of PGL4SHM
over black-box architecture for the corresponding modeling
error are provided in Table 2. The classification performance
of the black-box for no modeling error (96.18%) is greater
than that of PGL4SHM (90.74%) and the performance loss
reaches up to 6 percent. For a moderate level of model-
ing error (ME 10%), the black-box model yields a poor
performance (38.06%) compared to PGL4SHM (70.82%).

Black-box PGL4SHM
Modeling Error Acc. (%) Acc. (%) Impr. (%)
ME 0% 96.18 90.74 -5.66
ME 10% 38.06 70.82 86.07

Table 2. Classification accuracy of black-box and PGL4SHM
for experimental case

Additionally, Table 2 presents the averaged F1-scores for the
experimental case. The results and improvements are in par-
allel with the classification accuracies.

Black-box PGL4SHM
Modeling Error F1 (%) F1 (%) Impr. (%)
ME 0% 96.21 90.48 -5.96
ME 10% 31.09 67.36 116.66

Table 3. Averaged F1-score of black-box and PGL4SHM for
experimental case

Lastly, Fig. 7 illustrates averaged ROC for the experimen-
tal case. Blackbox and PGL4SHM have similar ROC per-
formance when there is no modeling error. Under moderate
level of modeling error, PGL4SHM has a better classification
performance compared to the blackbox model.

Figure 7. Averaged ROC curves for experimental case

From the results, it is evident that the black-box overfits the
numerical data such that the latent features of the experimen-
tal data cannot be perceived. As a result, without the inte-
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gration of the physical parameters, the data-driven black-box
architecture fails to predict the damage classes correctly. The
results indicate that in the presence of modeling error, the
generalization of PGL4SHM is much more successful.

4.4. Effect of Hyper-parameters

Here, we investigated the effect of the trade-off parameter,
λPGL on the prediction accuracy to understand the general-
ization of PGL4SHM under no modeling error. Table 4 sum-
marizes the performance of both models and the weights for
classification loss and physics-based loss for no modeling er-
ror. Trade-off parameter, in general, does not affect the per-
formance of PGL4SHM, except for the case (λPGL = 2.0)
where the weight for physical parameter loss is larger than the
one for the classification loss. PGL4SHM with no weights
to the physical parameters (λPGL = 0.0) is similar to the
black-box model, but it still contains the intermediate layers.
It is clear from the results that the introduction of interme-
diate layers degrades the performance of PGL4SHM when
there is no modeling error. The small dimension of inter-
mediate layers after the label prediction layer (see Figure 1)
causes the learning to be under-complete leading to decrease
in accuracy. For larger models, the number of physical pa-
rameters can be increased and the label prediction layer will
have a more complete basis for learning. For general pur-
poses, weighting the losses equally (λPGL = 1.0) is a good
starting point in training the PGL4SHM.

λPGL Accuracy (%)
0.0 86.26
0.5 89.24
1.0 87.48
2.0 68.32

Table 4. Effect of hyper-parameters on the classification ac-
curacy under no modeling error (ME 0%)

4.5. Interpretability of Intermediate Layer Outputs

We evaluated the explainability of the PGL4SHM by analyz-
ing the relationship between the damage condition and in-
termediate layer outputs. Specifically, we focused on the
interpretability of natural frequency, as it is more human-
comprehensible and easier to visualize. Figure 8 illustrates
predicted natural frequencies from intermediate layers, along
with the experimental (true) and simulated (training) coun-
terparts for four damage cases, where the modeling error is
%10. Here, PGL4SHM is evaluated with experimental data.
For each damage case, the intermediate layers in PGL4SHM
predict three natural frequencies around 30, 55, and 70 Hz
with some variance. Compared to the experimental true fre-
quencies of the structure (square markers), simulated values
extracted from FEM (cross markers) always undershoot. This
is expected since the modeling error is introduced to the FEM

Figure 8. Interpretability of intermediate layer outputs

by reducing the stiffness matrix by 10 percent which causes
the simulated frequencies to decrease. In general, the pre-
dicted frequencies range from simulated to experimental val-
ues.

During training, the simulated modal parameters are used for
physics-based loss function. On the other hand, integration
of physics-based parameters into the training also constrains
the inference such that PGL4SHM favors to predict the modal
parameters towards the experimental true counterparts. There
are some cases where the predicted values do not distribute
uniformly between experimental and simulated values. The
distortion is substantial especially for the second modes ( 50
Hz) of damage class 1 and 2. This error causes some of the
intermediate value outputs from class 1 and 2 to overlap with
the damage class 0 (no damage class) leading to mislabel-
ing. Due to the explainability of results, such problematic
instances can be in theory captured algorithmically and cor-
rected at testing time.

5. CONCLUSION

In this paper, we have presented a physics-based deep learn-
ing architecture, PGL4SHM to detect and localize the dam-
age in mechanical systems. The proposed approach incor-
porates physical parameters such as natural frequencies and
mode shapes, which are known to be statistically meaningful
features for damage detection, into the intermediate layers of
deep neural networks. To accommodate the intermediate lay-
ers, the architecture introduced physics-based loss into em-
pirical loss function. To evaluate the proposed approach, we
considered analytical and experimental cases. Both examples
show that physics-guided learning improves the accuracy of
the damage localization compared to black-box models in the
presence of modeling errors. Our empirical study shows that
weighting the classification and physical loss equally is an
effective starting point for training. Lastly, we discussed the
interpretability of intermediate layer output by analyzing the
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relationship between predicted modal parameters and classifi-
cation performance. Our findings indicate that the misclassi-
fied instances could be explained through the characterization
of predicted natural frequencies.
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